
TDXdown: Single-Stepping and Instruction Counting Attacks
against Intel TDX

Luca Wilke∗
l.wilke@uni-luebeck.de
University of Lübeck
Lübeck, Germany

Florian Sieck∗
florian.sieck@uni-luebeck.de

University of Lübeck
Lübeck, Germany

Thomas Eisenbarth
thomas.eisenbarth@uni-luebeck.de

University of Lübeck
Lübeck, Germany

ABSTRACT
Trusted Execution Environments are a promising solution for solv-
ing the data privacy and trust issues introduced by cloud computing.
As a result, all major CPU vendors integrated Trusted Execution
Environments (TEEs) into their CPUs. The biggest threat to TEE
security are side-channel attacks, of which single-stepping attacks
turned out to be the most powerful ones. Enabled by the TEE at-
tacker model, single-stepping attacks allow the attacker to execute
the TEE one instruction at a time, enabling numerous controlled-
and side-channel based security issues. Intel recently launched Intel
TDX, its second generation TEE, which protects whole virtual ma-
chines (VMs). To minimize the attack surface to side-channels, TDX
comes with a dedicated single-stepping attack countermeasure.

In this paper, we systematically analyze the single-stepping coun-
termeasure of Intel TDX and show, for the first time, that both, the
built-in detection heuristic as well as the prevention mechanism,
can be circumvented. We reliably single-step TDX-protected VMs
by deluding the TDX security monitor about the elapsed processing
time used as part of the detection heuristic. Moreover, our study
reveals a design flaw in the single-stepping countermeasure that
turns the prevention mechanism against itself: An inherent side-
channel within the prevention mechanism leaks the number of
instructions executed by the TDX-protected VM, enabling a novel
attack we refer to as StumbleStepping. Both attacks, single-stepping
and StumbleStepping, work on the most recent Intel TDX enabled
Xeon Scalable CPUs.

Using StumbleStepping, we demonstrate a novel end-to-end at-
tack against wolfSSL’s ECDSA implementation, exploiting a con-
trol flow side-channel in its truncation-based nonce generation
algorithm. We provide a systematic study of nonce-truncation im-
plementations, revealing similar leakages in OpenSSL, which we
exploit with our single-stepping primitive. Finally, we propose de-
sign changes to TDX to mitigate our attacks.

CCS CONCEPTS
• Security and privacy → Domain-specific security and privacy
architectures; Trusted computing; Cryptanalysis and other at-
tacks.

∗These authors contributed equally to this work

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security (CCS ’24),
October 14–18, 2024, Salt Lake City, UT, USA, https://doi.org/10.1145/3658644.3690230.

KEYWORDS
Trusted execution; virtualization; TDX; side-channel; microarchi-
tectural attacks; constant-time; ECDSA key reconstruction

ACM Reference Format:
Luca Wilke, Florian Sieck, and Thomas Eisenbarth. 2024. TDXdown: Single-
Stepping and Instruction Counting Attacks against Intel TDX. In Proceedings
of the 2024 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.3690230

1 INTRODUCTION
Data privacy concerns and legal regulations still hinder process-
ing of sensitive data in the cloud. Such outsourced computation
requires implicit trust in the cloud service provider, that has full
control over the machines that make up the cloud, and thus over
the processed data. Trusted Execution Environments (TEE) are
thriving due to the promise of protecting computations and data
even from privileged adversaries with full control over the systems,
e.g. over the hypervisor software. Effectively, TEEs lock out the
cloud service provider and enable verifiably protected data pro-
cessing on remote machines. Early designs like Intel SGX focused
on protecting single processes and required the developer to ad-
just their application to the TEE. While the introduction of the
library OS approach [6, 7, 49] partially solved this problem, a newer
and more scalable approach is taken by the newest generation of
TEEs, namely Intel Trust Domain Extensions (TDX) [21], AMD
SEV [3, 25, 26], ARM Confidential Compute Architecture [5], as
well as IBM Secure Execution [16]. This newest TEE generation
protects entire virtual machines (VMs) and can thus be used as a
drop-in solution to protect existing applications in the cloud with
only minimal adjustments.

While removing the hypervisor from the trust base promises a
wide range of use cases, it also comes with challenges and has severe
implications for security. In fact, it introduces an attacker model
in which the attacker has full system control. Thus, the adversary
has a broad arsenal of mechanisms to gleam information from the
protected code running inside the TEE. Since their introduction,
TEEs have been extensively scrutinized by security researchers,
revealing that microarchitectural side-channels remain an Achilles
heel of current TEE designs: Soon after the release of SGX it was
shown that control over the page table allows the hypervisor or
OS to learn detailed information about the control flow of TEE-
protected code [58]. Subsequent work demonstrated that numerous
microarchitectural features such as caches [14, 32, 50] or branch
prediction [13, 27] provide an even more fine-grained resolution of
secret-dependent control flows or data accesses.

https://orcid.org/0009-0005-5785-9179
https://orcid.org/0000-0002-1501-0936
https://orcid.org/0000-0003-1116-6973
https://doi.org/10.1145/3658644.3690230
https://doi.org/10.1145/3658644.3690230

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Luca Wilke, Florian Sieck, and Thomas Eisenbarth

Interrupt driven single-stepping [10, 56], a powerful attack tech-
nique against Intel SGX and AMD SEV, greatly increases the tem-
poral and spatial resolution of side-channel attacks on SGX [11,
31, 41, 45–48] and on AMD SEV [43, 44, 51, 56, 59]. As such it
poses a particularly severe threat for the security of TEEs. One
especially powerful attack that builds on single-stepping is instruc-
tion counting. There, the attacker combines page fault informa-
tion with single-stepping to reveal the target’s control flow with
intra-page precision, allowing them to exploit even the smallest
secret-dependent control flow deviations [10, 32, 33].

Thus, a good defense mechanism against single-stepping attacks
is an important building block for securing TEEs. Given the long
line of attacks on SGX, Intel recently published AEX-Notify [12] in
collaboration with academic researchers. AEX-Notify introduces
a hardware-software co-design that makes the enclave interrupt-
aware and allows it to prevent single-stepping attacks by providing
a special interrupt handler.

To ensure resistance against similar attacks on Intel TDX, Intel
early on conducted several security reviews for TDX [1, 20]. As
part of this effort, TDX provides a built-in countermeasure against
single-stepping attacks. In contrast to the AEX-Notify approach, the
TDX single-stepping countermeasure does not depend on the soft-
ware inside the TEE. Instead, the countermeasure is implemented
inside the TDX module, TDX’s security monitor. The countermea-
sure consists of a detection heuristic and a special single-stepping
prevention mode that gets activated by the heuristic. We present
the first systematic investigation of Intel’s single-stepping counter-
measure and show two attacks that overcome different aspects of
the countermeasure.

The first attack on the Intel TDX single-stepping countermea-
sure exploits a weakness in its detection heuristic to prevent the
activation of the single-stepping prevention mode. The heuristic is
partially based on the elapsed time between entering and exiting the
protected VM, which is very small if the VM is single-stepped. We
manipulate the TDX module’s sense of time, causing it to observe
normal execution times, although the VM is single-stepped. While
this vulnerability should be mitigatable by updating the detection
logic, defining a safe and sound rule set is not trivial.

The second attack, StumbleStepping, exploits the inherent side-
channel attack surface of the TDX single-stepping prevention. The
intended effect of the single-stepping prevention mode is to stop the
hypervisor from obtaining fine-grained insights into the protected
VM’s progress. StumbleStepping, however, exploits the prevention
mode’s inherent cache side-channel to leak the number of instruc-
tions executed by the protected VM. As such, StumbleStepping
exploits a systematic issue that is not easily fixable, meanwhile
providing a somewhat weaker leakage than single-stepping.

To demonstrate the capabilities of StumbleStepping in exploiting
small leakages, we target a minuscule leakage found in the cur-
rent ECDSA implementations of wolfSSL. The leakage was already
identified in [52], but was deemed unexploitable by the authors.
We show that this leakage can actually be captured by Stumble-
Stepping and is exploitable for select choices of elliptic curves. We
provide an extensive analysis of the ECDSA leakage, revealing simi-
lar problems in OpenSSL, which we exploit with our single-stepping
primitive.

In summary, we:
• Demonstrate an attack that renders the TDX single-stepping
countermeasure inoperative and enables single-stepping on
TDX

• Introduce the StumbleStepping attack, an inherent cache side-
channel in the single-stepping countermeasure of TDX that
leaks the number of instructions executed by the TD

• Use StumbleStepping and our single-stepping primitive, to
leak ECDSA keys in a novel nonce truncation-based attack
against wolfSSL and OpenSSL

• Provide an extensive analysis of nonce truncation leakages
in ECDSA implementations including wolfSSL and OpenSSL

The code to reproduce our results is available at https://github.com/
UzL-ITS/ tdxdown.

The remainder of this paper is structured as follows: Section 2
introduces required background information. Next, Section 3 ana-
lyzes the TDX single-stepping countermeasure in detail. Section 4
and Section 5 introduce and evaluate the two main attack primitives
of this paper. Section 6 analyzes nonce truncation-based control
flow leakages in ECDSA implementations. Afterwards, in Section 7
we present two attack case studies, exploiting wolfSSL’s ECDSA
leakage using StumbleStepping and OpenSSL’s ECDSA leakage via
our single-stepping primitive. Finally, we discuss limitations and
countermeasures in Section 8.

Responsible Disclosure. We officially reported our findings to
Intel’s PSIRT team on October 11, 2023. Using our proof of concept
code they reproduced our attacks and issued CVE 2024-27457. Intel
is working on a countermeasure against the single-stepping attack
and states that future TDX module versions after 1.5.0.6 should no
longer be affected. Intel will not provide countermeasures against
instruction counting attacks like StumbleStepping as part of the
TDX module and instead refers to their Software Security Guidance
information [24] to solve this issue on the application level.

We contacted wolfSSL and OpenSSL with our findings concern-
ing leaking nonce bits in their ECDSA implementations. The find-
ings were acknowledged for both libraries. At the time of submis-
sion, wolfSSL fixed the vulnerability in version 5.6.6 and assigned
CVE 2024-1544. OpenSSL does not assign CVEs for "same physical
system side-channel" [40] vulnerabilities but acknowledged it and
is working on a fix.

2 BACKGROUND
2.1 TDX
Intel Trust Domain Extensions (TDX) [21] is a Trusted Execution
Environment (TEE) that protects whole VMs. The protected VMs
are called Trust Domains (TD). Figure 1 shows an overview of the
TDX architecture. The so-called TDX module forms the core of the
design. In contrast to regular VMs, the hypervisor needs to invoke
the TDX module’s SEAMCALL API to manage TDs. Crucially, only
the TDX module can enter TDs. Exits from a TD return control
to the TDX module instead of to the hypervisor. Thus, the TDX
module forms a trusted layer between the untrusted hypervisor
and the TD.

To protect the TDX module, it resides in a newly-added, pro-
tected memory range. Furthermore, TDX introduces a new CPU
mode called Secure Arbitration Mode (SEAM) that is split into two

https://github.com/UzL-ITS/tdxdown
https://github.com/UzL-ITS/tdxdown

TDXdown: Single-Stepping and Instruction Counting Attacks against Intel TDX CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

MKTME Protected Memory

TD

SEAM Memory Range

TDX
Module

Unprotected Memory

Regular VM

Hyper-
visor

VM Enter

VM Exit

TD Enter

TD Exit

SEAMCALL
API

Figure 1: Unlike with regular VMs, the hypervisor does not
have direct access to TDs but has to manage them via the
TDX module. Based on Figure 5.2 from [21].

sub modes VMX root and VMX non-root. The TDX module runs in
the SEAM VMX root mode, while TDs run in the SEAM VMX non-
root mode. To protect against physical attackers the memory used
by the TDs is encrypted using Multi Key Total Memory Encryption
(MKTME) [18]. MKTME allows the use of different encryption keys
based on the KeyID, an identifier that is encoded by re-purposing
the upper bits of the physical address. With TDX, the KeyID range
is split into shared and private. Using private KeyIDs is restricted
to the new SEAM CPU mode and thus to the TDX module and TDs.
In addition, an access right-based mechanism is used for additional
security when the CPU is outside the SEAM mode. Reading pro-
tected memory returns a fixed pattern to guard against ciphertext
side-channel attacks [28, 30]. Writing taints the memory location,
leading to a fatal error the next time the TD tries to access it.

2.2 TDX Control Data Structures
The data structures describing a TD are managed by the TDX mod-
ule [17, Sec. 6]. One such control data structure is the Trust Domain
Virtual Processor State (TDVPS), which describes the state of each
virtual CPU of a given TD. The memory for the data structure is
initially allocated by the hypervisor and then passed to the TDX
module, which encrypts the memory with a private MKTME KeyID.
Thus, while knowing the memory addresses of the TDVPS, the
hypervisor is forced to use the TDX module’s API to interact with
the content of the data structure.

2.3 Cache Attacks on Intel TDX
As explained in Section 2.1, TDX encrypts the TD’s memory with
MKTME which has a severe impact on the applicable cache side-
channels. Since the MKTME KeyID is encoded in the physical ad-
dress bits, it is part of the cache tag. As a result, accessing the
same data with different KeyIDs would, in theory, lead to different
cache tags and thus in different decryptions of the same physical
data residing in the cache at the same time. However, a coherency
mechanism ensures that an existing entry using a different KeyID
is flushed prior to loading the data with the new KeyID. This be-
havior enables Flush+Reload style cache attacks where the attacker
accesses TD memory with a different KeyID, to evict it from the
cache [1, 22]. Without this mechanism, an attacker could not per-
form Flush+Reload attacks, as they can neither perform flushes nor
memory accesses with the TD’s KeyID.

2.4 Instruction Counting Attacks
Instruction counting is a single-stepping-based side-channel attack
against TEEs that aims to infer fine-grained control flow informa-
tion. The attacker is assumed to know the executed binary. Then,
they combine the coarse grained page fault controlled-channel [58]
with a single-stepping attack, to reconstruct the victim’s control
flow with instruction granularity. Instruction counting attacks can
even detect if two code branches of equal length execute memory
accesses at different points in the instruction sequence [10, 33]. To
guard against such attacks, security critical code, should employ
the data oblivious constant-time paradigm: Neither the execution
path nor any memory accesses may depend on secret data. While
hard to implement, these properties defeat all known side-channel
attacks.

2.5 Elliptic Curve Digital Signature Algorithm
The Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant
of DSA on elliptic curves [38]. In order to sign a message, one
chooses an elliptic curve 𝐸 (F𝑝) over a finite field F𝑝 and a generator
𝐺 of order 𝑛. Next, the signer generates a long-term secret key
𝑑 ∈ [1, 𝑛 − 1] and the corresponding public key 𝑄 = 𝑑 ·𝐺 , which
is a point on the elliptic curve. Finally, for every signature, the
signer generates a new unique nonce 𝑘 ∈ [1, 𝑛 − 1] which they
must keep secret. The signature is then computed over the hash ℎ
of the message and comprises the tuple (𝑟, 𝑠). The signer calculates
𝑟 = 𝑥𝑟 mod 𝑛 with (𝑥𝑟 , 𝑦𝑟) = 𝑘 ·𝐺 and 𝑠 ≡ 𝑘−1 (ℎ + 𝑟 · 𝑑) mod 𝑛.

The security of the long-term key 𝑑 in ECDSA depends heavily
on the choice of the nonce 𝑘 . A slight bias in the randomness of 𝑘
allows to recover the secret key. While the sampling algorithm used
by most ECDSA implementations produces sufficiently random
numbers, an attacker can also obtain such a bias via side-channel
information [4, 42, 52]. To reconstruct the secret key 𝑑 from signa-
tures for which the attacker has partial information about 𝑘 , there
are two common approaches. Both first recover 𝑘 and then use it to
compute 𝑑 . The first approach formulates the problem as a shortest
vector problem (SVP) and solves it via lattice reduction techniques
like LLL or BKZ [15, 39]. Recently, Albrecht et al. [2] improved the
performance of the lattice reduction approach by combining it with
enumeration and sieving with predicate, allowing to exploit smaller
biases while also requiring fewer biased signatures. The second
approach by Bleichenbacher [8] is based on Fourier analysis.

2.6 Attacker Model
We assume the default TEE attacker model, where an attacker with
root privileges on the system tries to attack a program running
inside the TEE [10, 29, 35, 55]. Most importantly for this work, the
attacker is capable of using the page fault controlled-channel, pro-
gramming the APIC timer and controlling the processor frequency.
For our experiments, we disabled all hardware cache prefetchers,
Intel SpeedStep, as well as hardware controlled P-states. The latter
is important to allow the Linux cpufreq driver to control the CPU
frequency. We do not assume physical access.

This is in line with the Intel TDX attacker model [21]. A real
world example is amalicious or compromised cloud service provider
that tries to leak data from a customer’s TD.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Luca Wilke, Florian Sieck, and Thomas Eisenbarth

Single-Stepping Detection

TDX Module

Is in stepping
PM mode?

Check
PmSteps > 0?

Is single-step
attempt?

TD

H
yp

er
vi
so
r

(1.1)
Enter

(1.2) Enter

No

Yes; PmSteps =
rand(1,32)

(2) TD Exit (e.g. Interrupt)
Check for Single-Stepping

Yes; PmSteps −= 1

No

Yes

No

Figure 2: The hypervisor starts the TD by calling the TDX
module (1.1) which in turn enters the TD (1.2). When the
TD exits (2), the TDX module applies a heuristic to check
for single-stepping. If yes, it activates the prevention mode
(PM) and re-enters the TD for a randomized number of times
(PmSteps), before disabling the PM mode, as indicated by the
circle in the top left part. On each entry, a special configu-
ration is used to ensure that the TD only executes a single
instruction.

3 TDX SINGLE-STEPPING
COUNTERMEASURE

Single-stepping is a powerful attack mechanism that has been suc-
cessfully deployed against major TEEs like SGX [10, 31, 33, 41,
45, 46] and AMD SEV [43, 44, 51, 56, 59]. It uses the attacker’s
control over the APIC timer to interrupt the TEE after every in-
struction. Besides enhancing existing side-channel attacks, it can
also be used for so-called instruction counting attacks, to reveal the
TEE’s control flow at the instruction level, allowing the exploita-
tion of minuscule leakages in e.g. cryptographic libraries. Given
the devastating effects of single-stepping attacks, Intel TDX comes
with a built-in countermeasure which consists of a heuristic to de-
tect single-stepping interrupt patterns and subsequently activates
a prevention mode. In the remainder of this section we explain
both mechanisms in detail. An overview of the single-stepping
countermeasure is given in Figure 2.

TDX Interrupt Architecture. On both, Intel SGX and AMD
SEV, single-stepping attacks exploit the fact that external interrupts,
like the APIC timer interrupt, abort the execution of the TEE and
return control to the attacker controlled OS or hypervisor. Intel
TDX, however, has a different design. Neither can the attacker con-
trolled hypervisor directly enter the TD nor do exits from the TD
immediately return control to the hypervisor, as discussed in Sec-
tion 2.1. Instead, there is a trusted intermediate layer, called the
TDXmodule, which runs in a special CPUmode and offers so-called
SEAMCALLs to the hypervisor for managing TDs. While this design
still allows a malicious hypervisor to program the APIC timer such
that it interrupts the TD shortly after it is entered, the resulting exit
is now handled by the TDX module, as shown in Figure 2. Thus, the
malicious hypervisor cannot immediately observe if the TD was
interrupted. Since the TDX module is not intended to replace the
hypervisor, there are many instances in which the TDX module

eventually needs to notify the hypervisor about the TD interruption
to allow the expected virtualization behavior. To prevent interrupt-
based single-stepping attacks, the TDX module makes an attempt
on deciding whether a certain interrupt pattern is benign or if it is
part of an attack. In the former case, the TDX module immediately
returns to the hypervisor, while in the case of a detected attack it
continues to execute the TD for a randomized amount of cycles via
the single-stepping prevention mode, before eventually handing
back control to the hypervisor.

Single-Stepping Detection. Whenever the TD is exited due to
an interrupt, the TDX module measures and evaluates two proper-
ties to decide if the current interrupt behavior is benign or if the
hypervisor tries to perform a single-stepping attack. In Figure 2
both checks are summarized as “Is single-step attempt?”.

The first analyzed property is the number of bytes the TD’s
instruction pointer (RIP) has advanced since the last exit. If RIP has
advanced by more than two times the number of bytes required for
the longest x86 instruction, the TDX module can be sure that at
least two instructions have been executed, i.e., the TD has not been
single-stepped [23].

The second analyzed property is the time that has elapsed since
the TD was entered via the TDX module. To obtain the elapsed
time, the TDX module stores a rdtsc timestamp 𝑡𝐵 before entering
and a timestamp 𝑡𝐴 after exiting the TD. If “sufficient” time 𝑡𝑑 =

𝑡𝐴 − 𝑡𝐵 has passed, the current interrupt behavior is classified as
benign. In version 1.5 of the TDXmodule the threshold is set to 4096
rdtsc increments [23]. If either at least two instructions have been
executed or sufficient time has passed between entries, the behavior
is classified as normal. Otherwise, the TDX module activates the
single-stepping prevention mode.

Prevention Mode. The core idea of the prevention mode is
to execute a randomized number of instructions PmSteps inside
the TD before finally informing the hypervisor about the initial
interrupt. To implement this, after detecting a potential single-
stepping attempt, the TDX module first disables all interrupts to
block the hypervisor from further interfering with the execution of
the prevention mode. Since the TDX module runs in the privileged
SEAM VMX root mode, the prevented interrupts even include NMIs
and SMIs [36, Sec. 1.3.4]. Next, the TDX module enters the TD with
the Monitor Trap Flag, causing it to exit after executing exactly one
instruction [19, Sec 26.5.2, Vol 3C]. This process is repeated in a
loop until PmSteps instructions have been executed, as depicted by
the circle in the top left of Figure 4.

In essence, the single-stepping prevention mode single-steps
the TD PmSteps times from the TDX module while preventing the
hypervisor from architecturally observing or interrupting the TD.
When the control is eventually returned to the hypervisor, it is
unaware of the TD’s exact progress.

4 SINGLE-STEPPING TRUST DOMAINS
In this section, we demonstrate how to circumvent the single-
stepping detection heuristic from the previous section, re-enabling
single-stepping attacks on TDX. In essence, we delude the TDX
module about the elapsed time between entering and exiting the
TD by reducing the frequency of the CPU core running the TD.

TDXdown: Single-Stepping and Instruction Counting Attacks against Intel TDX CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Thereby, we exploit that the rdtsc timestamp counter’s frequency
is unaffected by CPU frequency scaling.

4.1 Attack Primitive Description
The TDX module classifies a TD interruption as benign if sufficient
time has passed since entering the TD, as explained in Section 3.
More precisely, the time span 𝑡𝑑 between entering and exiting the
TD is measured inside the TDX module by comparing the rdtsc
value 𝑡𝐵 shortly before entering and 𝑡𝐴 shortly after exiting the TD.
The goal of the attacker is to trick the TDX module into measuring
𝑡𝑑 ≥ 4096 while only executing one instruction in the TD.

On modern Intel CPUs the rdtsc timestamp counter is incre-
mented at a constant frequency instead of being tied to the current
CPU frequency [19, Sec 18.17, Vol 3B]. We combine this rdtsc behav-
ior with the malicious hypervisor’s ability to configure the current
operating frequency of the core on which the TDX module and
the TD are running: Using a constant frequency for rdtsc implies
that the demanded 4096 timestamp counter increments always take
the same wall clock time. Meanwhile, lowering the frequency of
the victim core slows down its execution speed. By setting the fre-
quency low enough, entering the TD, executing one instruction and
leaving the TD already takes more than 4096 timestamp counter
increments. Consequently, with the modified CPU frequency in
place, we are able to use the APIC timer to interrupt the TD after ev-
ery instruction while still ensuring that the TDX module measures
𝑡𝑑 ≥ 4096 and does not trigger the single-stepping prevention.

Reliable Single-Stepping. To use the APIC timer for single-
stepping, we need to ensure that the corresponding interrupt hits
during the execution of the first instruction. As described in [10, 12,
56], we flush the TD’s Translation Lookaside Buffer (TLB) to prolong
the execution time of the first instruction and therefore increase
the timing window that leads to single-stepping. By choosing the
timer such that it arrives rather at the start of the single-stepping
window than at the end, we prevent multi-stepping.

While this causes occasional zero-steps, we can detect them
by running a cache attack against the code page currently exe-
cuted by the TD. We use the KeyID-based Flush+Reload mechanism
from [1, 22], which results in a very strong signal with access tim-
ing differences higher than DRAM reads. The hypervisor flushes
all cache lines corresponding to the code page before entering the
TD and reloads all lines after exiting the TD. A long reload time
signals the execution of an instruction within the TD. In the next
paragraph, we describe how we obtain the address of the code page.

Finally, similar to SEV-Step [56], we have to modify the hypervi-
sor to suppress virtual APIC timer interrupts while single-stepping
the TD. Otherwise, the TD would jump to the corresponding inter-
rupt handler, instead of executing the targeted code.

Adding Spatial Information. For a meaningful interpretation
of the single-stepping data, we need to correlate it with the currently
executing code in the TD. To achieve this, we use the well known
page fault side-channel [29, 33, 35, 37, 45, 55], that leaks both code
and data accesses with page granularity, in order to detect the
currently executing application via template attacks. In contrast to
other TEEs like SGX or SEV, the page tables for the TD’s private
memory are inaccessible to the attacker, since they are managed
by the TDX module. As a result, we cannot modify the access

permission bits to force page faults. However, the TDX module still
offers a dedicated API that allows the hypervisor to temporarily
block access to any TD page, albeit without the ability to only
remove individual access permissions from the page.

Zero-Stepping. While we try to minimize zero-stepping for in-
struction counting attacks, another line of research has shown that
it can be used to boost microarchitectural side-channels by allowing
to repeatedly measure the effect of the same instruction [48]. For
this work, we consider further exploration of zero-stepping attack
primitives on TDX out of scope.

4.2 Attack Primitive Evaluation
In this section, we evaluate our primitive for single-stepping TDX
with a synthetic target. The experiments were performed on a
5th generation Intel Xeon Gold 6526Y with a base frequency of
2800 MHz. The processor runs the TDX module in version 1.5. We
ran the evaluation in a default Ubuntu 23.10 environment and we
implemented the code of the attack primitive on top of the Ubuntu
Linux kernel in version 6.5 with the official TDX patches. To break
the rdtsc based time check in the single-stepping heuristic, we
configure the CPU frequency of the core running the TD and the
TDX module to the lowest possible value of 800 MHz.

To validate that our single-stepping primitive works reliably, we
verify that we do not multi-step and that we dependably detect
zero-steps. Therefore, we run the loop from Listing 1 in the TD and
measure 3 different scenarios: Executing the loop once (8 instruc-
tions), nine times (56 instructions) and ten times (62 instructions).
We repeat the measurement for every scenario 10 000 times. The
code for the single-stepping evaluation purposely contains NOPs as
these are the shortest instructions and do not load any parameters
from memory. For the evaluation we assume that the address of the
code page of the target program as well as the addresses pointed to
by r8 and r9 are known to the attacker.

We evaluate the attack in the release TDX mode as well as in
debug mode. In debug mode, the TDX module offers additional API
calls, e.g. reading the current instruction counter. Thereby, we can
immediately check that no multi-steps occur and that all zero-steps
are detected by the cache attack. In release mode, we check that
after filtering zero-steps, the remaining event count matches the
expected number of instructions. Again, we do not encounter any
errors. We did not observe meaningful differences between the two
modes with regard to single-stepping. When running the three
evaluation scenarios we execute 1 260 000 instructions and observe
only 0.8% zero-step events.

5 STUMBLESTEPPING: LEAKING
INSTRUCTION COUNTS

In this section, we describe a second attack primitive, that we dub
StumbleStepping, allowing an attacker to perform instruction count-
ing attacks against the TD. As discussed in Section 2.4, instruction
counting attacks are commonly used to exploit secret-dependent
control flow in, e.g., cryptographic libraries. StumbleStepping works,
even if the single-stepping attack from the previous section is miti-
gated, i.e., the TDX module correctly activates the single-stepping
prevention mode. In contrast to our single-stepping attack, it ex-
ploits a conceptual weakness of the countermeasure instead of a

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Luca Wilke, Florian Sieck, and Thomas Eisenbarth

Listing 1: Evaluation target
for single-stepping.

mov q w o r d ptr [r8], 42

loop_label:

dec rax

nop

nop

nop

nop

jnz loop_label

mov q w o r d ptr [r9], 42

Listing 2: Evaluation target
for StumbleStepping.

mov q w o r d ptr [r8], 42

loop_label:

dec rax

jnz loop_label

mov q w o r d ptr [r9], 42

Figure 3: Synthetic programs for evaluating the stepping
primitives from Section 4 and Section 5. We block access to
the memory locations pointed to by r8 and r9, using the re-
sulting page faults as the start and end trigger for the attack.

TDX Module

Single-Stepping
Detection

TDVPSTD

Attacker
Thread 1

Attacker
Thread 2

APIC TimerE

(3.a) SEAMCALL
Enter

(3.b)
Enter (6.b) Read / Write

(7) Return to HV

(1.b) continuous
KeyID based
Flush&Reload

(1.a)
Spawn

(5) Check for
Single-Stepping

(6.a) Execute
Additional
Instructions

(2) Set
Timer
Deadline

(4) Interrupt

Figure 4: Overview of the steps required for APIC timer-
based StumbleStepping attacks against TDX. The Attacker
spawns a new thread to concurrently probe the pages with
the victim’s TDVPS using the KeyID-based Flush+Reload
attack. The double ended arrow in step (6.a) represents the
prevention mode (c.f. Section 3) and means that the TDX
module re-enters the TD several times, before eventually
resuming with step (7).

flawed checking logic. In essence, StumbleStepping turns the pre-
vention mode upon itself and employs a cache attack to leak the
number of instructions executed by the TD. An overview of the
attack procedure is shown in Figure 4.

5.1 Attack Primitive Description
The core idea of StumbleStepping is to employ a side-channel attack
(1.b) against the single-stepping prevention mode implemented in-
side the TDXmodule. The side-channel attack runs in parallel to the
execution of the TDX module, on a separate core (1.a). In contrast
to the single-stepping primitive, we do not want to avoid detection
but deliberately trigger the countermeasure. After detecting a po-
tentially malicious interrupt pattern (4 and 5), the single-stepping
prevention mode of the TDX module re-enters the TD several times
(6.a), before returning control to the hypervisor (7). The TDX mod-
ule configures the TD such that on each entry the TD executes only

a single instruction (6.a). For StumbleStepping, we exploit that the
TDX module leaks the number of times it re-enters the TD via a
cache side-channel (1.b). For each TD entry (6.a), the TD’s TDVPS
pages are accessed (6.b). This data structure describes the state of
the TD, e.g., the vCPU’s register file. Note that the information
stored in the TDVPS pages is encrypted and thus inaccessible to the
hypervisor. However, by running a cache attack in parallel to the
execution of the countermeasure inside the TDXmodule, the hyper-
visor can leak the number of accesses to the TDVPS pages and thus
the number of instructions executed by the TD. To continuously
leak the number of executed instructions, the hypervisor sends
APIC timer interrupts such that the countermeasure mode is al-
ways active (4). For the cache attack, we again use the KeyID-based
Flush+Reload mechanism.

Improving Temporal Resolution. To obtain reliable informa-
tion, we require a high temporal resolution for our cache attack,
such that we do not miss any of the TDX module’s accesses to the
TDVPS structure. Thus, we only monitor a single cache line of the
TDVPS. In addition, we again decrease the CPU frequency of the
core running the TDX module while setting the frequency of the
attacker’s core to the highest possible value, increasing the effective
sampling rate of our attack.

However, in order to ensure that we do not accidentally trigger
the single-stepping attack from the previous section, circumventing
the activation of the single-stepping prevention mode, we cannot
clock down the TD’s core to the lowest possible value of 800 MHz.
Instead, we have to keep it running above 1.6 GHz. Thus, once the
single-stepping detection heuristic has been fixed, the temporal
resolution could be doubled by using the lowest frequency.

Adding Spatial Information.Aswith the single-stepping prim-
itive in Section 4, we use the page fault controlled-channel to cor-
relate the information from StumbleStepping with the currently
executing code page for a meaningful interpretation. The random-
ized bursts in which StumbleStepping executes the TD prevent the
attacker from terminating the attack at a arbitrary instruction. How-
ever, we can exploit that the TDXmodule aborts the single-stepping
prevention mode upon page faults to precisely stop the execution
at a defined code location.

In summary, combined with page fault information, Stumble-
Stepping reveals the TD’s control flow with intra-page resolution,
allowing to exploit minuscule secret-dependent control flow leak-
ages. In contrast to single-stepping, it does not allow to pause the
execution after every instruction.

5.2 Attack Primitive Evaluation
For evaluating the StumbleStepping primitive, we performed all
experiments remotely on an Intel provided machine with a TDX
enabled 4th generation Xeon Platinum 8480CTDX processor. Fur-
thermore, we verified that the attack primitive still works on a 5th
generation Intel Xeon Gold 6526Y which introduces public avail-
ability of Intel TDX. The 4th generation CPU used the TDX module
software version 1.0 and the 5th generation CPU used version 1.5.
For the 5th generation Intel Xeon processor, we ran the evaluation
in a default Ubuntu 23.10 environment and implemented the code
of the attack primitive on top of the Ubuntu Linux kernel in version

TDXdown: Single-Stepping and Instruction Counting Attacks against Intel TDX CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

6.5 with the official TDX patches. The evaluation on the 4th gen-
eration CPU was conducted on Ubuntu 22.04 with kernel version
5.19. We evaluate StumbleStepping with a synthetic target.

Profiling TDVPS Accesses. For StumbleStepping, we exploit
that each TD entry leads to accesses to the TDVPS data struc-
ture which we want to observe via a cache attack in parallel to
the execution of the TDX module. We again use the KeyID-based
Flush+Reload mechanism and measure between 600 and 1000 cycles
when accessing a cache line that has previously been accessed by
the TDX module, which is much higher than the DRAM access
time caused by a regular cache attack. To maximize the temporal
resolution, we only observe one cache line of the TDVPS structure.
We observe, that the number of observed cache misses per TD entry
varies depending on the monitored offset inside the TDVPS pages.
In an offline profiling step, we determine the offset with the lowest
amount of noise, by running StumbleStepping against a calibration
target several times, sweeping over every cache line aligned offset.
On our machine, offset 0x128 in the third TDVPS page gives a stable
correlation, with two accesses per TD entry.

Accuracy. To evaluate the accuracy of our counting primitive,
we use the synthetic code snippet from Listing 2. We choose a loop
with only one instruction instead of an if-else construct as it allows
us to easily scale the number of executed instructions while still
allowing differences as small as two executed instructions between
two runs. For the evaluation, we assume that the memory locations
pointed to by r8 and r9 are known to the attacker.

Figure 5 shows the resulting data for 1 to 5 loop iterations which
corresponds to 4 to 12 executed instructions. Figure 6 shows the
data for 100 to 105 loop repetitions which corresponds to 202 to 212
instructions. The results clearly show that the measurement noise
increases when we observe longer program sequences. However,
the distributions for different iteration counts only partially overlap
and the means are easily distinguishable. Thus, when using only a
single measurement, there is a certain error probability when trying
to distinguish events with almost the same amount of executed
instructions. However, repeating the measurement multiple times
eliminates the error. For events with larger instruction differences,
a single measurement is sufficient.

6 LEAKING ECDSA KEYS FROM BIASED
NONCE TRUNCATION

As discussed in the preceding sections, single-stepping attacks
are frequently used to leak secret-dependent control flow. To pro-
tect against such attacks without relying on countermeasures em-
ployed by the TEE, cryptographic libraries should use the data
oblivious constant-time programming paradigm. However, devel-
oping constant-time code at the instruction level is a challenging
task. In this section we present, in detail, a control flow-based leak-
age during the derivation of the random and secret nonce 𝑘 of the
ECDSA signing process.

In essence, there are two established ways to generate a ran-
dom nonce mod 𝑛: A modular reduction-based truncation of the
randomly generated value or rejection sampling of random values
until a value 𝑘 < 𝑛 is drawn. Implementations of the latter method
usually do not leak a nonce bias. However, implementations of
the former are more prone to leak information, as they require a

Figure 5: Inferred instruction count for 1 to 5 repetitions of
the loop from Listing 2 repeating using 10 000measurements.
The dotted lines show the mean value.

Figure 6: Inferred instruction count for 100 to 105 repetitions
of the loop from Listing 2 using 10 000 measurements. The
dotted lines show the mean value. We removed a total of 17
outliers above 300 inferred instructions.

division which is more complex to implement in a side-channel re-
sistant manner. Both methods are listed in the FIPS digital signature
standard [38, Sec. A.3.1, A.3.2].

WhileWeiser et al. [52] already discussed this leakage in modular
reduction-based truncation, they deemed it negligible and did not
further investigate it. We analyze this leakage in full detail and
show that, depending on the curve, in fact up to 15 bits of the nonce
are leaked. Additionally, we systematically investigate the usage
of truncation for nonce computation in multiple cryptographic
libraries, finding leakages in wolfSSL and OpenSSL. We evaluate
the introduced leakage and its exploitability depending on the curve
and the curve’s modulus.

Root Cause. To ensure that the nonce 𝑘 is smaller than the
curve’s modulus 𝑛, both wolfSSL and OpenSSL use truncation via
modular reduction of a random byte string. The byte string has a bit

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Luca Wilke, Florian Sieck, and Thomas Eisenbarth

Table 1: ECDSA nonce generation in different libraries.

Library Version Nonce Derivation Vuln. c’time
version inc.

wolfSSL 5.6.4 truncation yes limited1
OpenSSL 3.2.0 truncation yes no2
Nettle 3.9.1 rejection sampling no N/A3

Mbed TLS 3.5.1 rejection sampling no N/A3

botan 3.2.0 rejection sampling no N/A3

nss 3.9.4 rejection sampling no N/A3

1 Only for curves secp256,384,521; not enabled by default
2 Constant-time variant not yet implemented
3 Not applicable; the default is rejection sampling

length greater than the bit length of the curve order 𝑛. Next, both
libraries perform a modular reduction, reducing the random byte
string to a value smaller than 𝑛. Therefore, on a high level, both
libraries consider the two top most words of the numerator 𝑘𝑡𝑜𝑝
and the top most word of the denominator𝑛𝑡𝑜𝑝 . Next, they compute
𝑞𝑡𝑜𝑝 =

𝑘𝑡𝑜𝑝
𝑛𝑡𝑜𝑝

to estimate the quotient 𝑞 = 𝑘
𝑛 . Afterwards, they check

whether 𝑛 · 𝑞𝑡𝑜𝑝 > 𝑘 . If this condition is true, 𝑞𝑡𝑜𝑝 is decremented.
This decrementation is implemented as a loop, meaning the number
of times 𝑞𝑡𝑜𝑝 has to be decremented is reflected in the execution
count of the loop. The number of loop iterations in turn can be
observed by a side-channel attacker and leaks information about
the nonce’s most significant bits.

Investigated Libraries and Curves. Table 1 lists all libraries
we investigated during this work and whether they use truncation
or rejection sampling. Of the analyzed libraries, only wolfSSL and
OpenSSL use truncation. We initially found the leakage by analyz-
ingwolfSSLwithMicrowalk [53, 54]. Using the obtained knowledge,
we were able to analyze the remaining libraries manually.

The remainder of this section is structured as follows. First, we
give details on our analysis methodology. Next, we present the
discovered leakages in wolfSSL and OpenSSL in more detail and
discuss their exploitability.

6.1 Analysis Methodology
Before giving the results on the individual implementations in the
analyzed libraries, we describe our analysis workflow.

Simulated Side-Channel Traces. In order to calculate the
maximum obtainable information and plot the bias introduced to
the nonce 𝑘 , we simulate side-channel traces by adding counters to
the targeted code, to observe the occurrence of certain control flow
events. We give more details on these events in the next sections.
For each curve and library we collect 10 million signatures. Per
signature, we store the values of the injected event counters, the
signed hash ℎ, the ECDSA signature values 𝑟 and 𝑠 , as well as the
nonce 𝑘 . For the latter, we again modify the libraries as the nonce
is not usually exported. We stress that these modifications do not
introduce secret-dependent changes to the control flow and thus do
not influence the code’s leakage properties. Afterwards, we divide
the collected samples into sets, one set per observable control flow
event combination. Within each set, we analyze the distribution of

Table 2: Maximum obtainable leakage in terms of mutual in-
formation (MI) and fully leaked bits (FB) for different curves
in wolfSSL and OpenSSL. TheMI values are rounded. The full
bit (FB) value reports on those bits which have the same value
for all nonces in a distribution. The event column specifies
the event combination which corresponds to the leakage and
the probability of the event combination.

wolfSSL OpenSSL

Curve Event MI / FB Event MI / FB

(𝑊1,𝑊2) [bit / bit] (𝑂1, 𝑂2) [bit / bit]
𝑃𝑟 [𝐴 = 𝑎] 𝑃𝑟 [𝐴 = 𝑎]

bp224r1 (2, *) 1.6 / 1 (1, 0) 7 / 6
0.09 1.6 · 10−4

bp320r1 (3, *) 3 / 3 (2, *) 3 / 3
< 0.002 1.7 · 10−3

bp384r1 (2, *) 3.5 / 0 (1, *) 3.5 / 0
0.05 0.05

secp160r1 (2, *) 15.6 / 15 (1, *) 15.8 / 15
1.5 · 10−5 1.3 · 10−5

the bit values of 𝑘 . We refer to a distribution of nonce bit values
simply as distribution.

Leakage Quantification. To quantify the leakage, we calcu-
late 𝐼 , the mutual information (MI) per distribution. Therefore, we
use 𝐼 =

∑𝑖<bitlen(𝐺)
𝑖=0 𝐻 (𝐵) − 𝐻 (𝐵 |𝐴 = 𝑎) with 𝐵 being the ran-

dom variable describing a single bit value over the alphabet {0, 1},
𝐴 the random variable describing the distribution of nonces, and
𝐺 the generator of the curve. The number of distributions per
curve depends on the number of discernible events. The probability
𝑃𝑟 [𝐴 = 𝑎] of a nonce falling into one of the distributions is cal-
culated by dividing the number of samples with a specific event
combination by the total number of signatures collected for the
curve.

Since we subdivide all nonces recorded during sampling into
disjoint sets, we are interested in the overall information gain on
all nonce bits per distribution rather than the gain over all distribu-
tions. Thus, we do not sum over all distributions when calculating
the MI but only consider the distribution of the considered event
combination.

While the MI precisely captures the leakage from an informa-
tion theoretic point of view, most key reconstruction algorithms
require knowing the value of individual bits with high certainty.
Thus, we also analyzed which bits of each nonce always have the
same value for a given event combination. We call these full bits.
Comparing MI and full bits gives an insight on how much of the
MI is distributed over small biases in different bits. All leaking bits
are most significant bits (MSB). We analyzed the curves secp128r1,
secp160r1 and secp192r1 as well as the R1 Brainpool curves for 160,
192, 224, 256, 320 and 384 bits for wolfSSL and OpenSSL.

The most important findings are summarized in Table 2 and the
results for the remaining curves and control flow events can be
found in Table 3 in Appendix A. Per curve and library, we specify the

TDXdown: Single-Stepping and Instruction Counting Attacks against Intel TDX CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Listing 3: Simplified version of the leaking _sp_div_impl
(wolfssl/wolfcrypt/src/sp_int.c) function which divides a by
d and is called during the nonce generation. The snippet is
not self-contained and only intended to highlight the control
flow. The colored Event commentsmark points in the control
flow that leak information about the nonce.
1 int _sp_div_impl(sp_int* a, d, r, trial) {

2
3 for (i = a->used - 1; i >= d->used; i--) {

4 // Calculate trial quotient

5 t = sp_div_word(a->dp[i], a->dp[i-1], dt);

6 do {

7 for (j = 0; j < d->used; j++) {...}

8 for (j = d->used; j > 0; j--)

9 //Event 𝑊2
10 if (trial ->dp[j] != a->dp[j + o])

11 b r e a k ;

12
13 if (trial ->dp[j] > a->dp[j + o]) { t--; }

14 //Event 𝑊1
15 } w h i l e (trial ->dp[j] > a->dp[j + o]);

16 }

17 };

control flow events which cause leakage in the event column. In the
next two sections, we describe the leakages and the corresponding
events in more detail.

6.2 Nonce Leakage in wolfSSL
For analyzing the leakage in wolfSSL, we use the default compile
configuration with additional hardening parameters and options to
enable smaller ECC curves as well as Brainpool curves. While the
default implementation of wolfSSL’s math functionality is suppos-
edly constant-time [57], the default ECC sign functionality makes
use of truncation for generating 𝑘 . With additional, non-default
compiler flags, wolfSSL includes implementations which use rejec-
tion sampling, but these are only available for the curves secp256,
secp384 and secp521.

Leaking Control Flow Events. A simplified version of the
algorithm for nonce truncation in wolfSSL is shown in Listing 3.
Event𝑊1 in line 14 describes the number of times the do-while
loop was executed and thus how often the estimated quotient was
decremented. As a shorthand, we use𝑊1 = 𝑥 if𝑊1 occurred 𝑥

times. The event𝑊2 counts which words of the estimated quotient
and nominator are relevant for the comparison to decide on the
decrementation of the variable t.

Leakage Quantification. Figure 7 shows the bias introduced
to the nonce when𝑊1 = 2, i.e. there are two iterations of the do-
while loop. While this event only happens with a probability of
approximately 1.5 · 10−5, it reveals that 15 MSBs of the nonce are
1. Note, the bit length of the curve order of secp160r1 is 161 bit,
contrary to what the name suggests. However, the order’s MSBs
are all 0, except for the most significant bit. Thus, the order of
secp160r1 is only slightly larger than 2160, meaning the likelihood
of a 𝑘 with 161 bits is very small. Within the 10 million samples we
collected, most (about 50%) have a 𝑘 of size 160 bit, but there was
no sample with a 𝑘 of size 161 bit. Consequently, we assume the
most significant bit of 𝑘 to be 0 and known by default.

0 20
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

140 160
Nonce bits

secp160r1; Samples in dist: 1420; trail guesses ctr: 2

Figure 7: Distribution of the nonce bits for curve secp160r1
in wolfSSL given event (𝑊1 = 2,𝑊2 = ∗). The y-axis shows the
percentage of nonces for which the value of the correspond-
ing bit is 1. The 15 most significant bits are always 1.

The curve brainpoolp320r1 and brainpoolp384r1 show a leakage
of 3 bit and 3.5 bit. The distributions are shown in Figure 10 in the
Appendix. Though the brainpoolp384r1 curve does not leak any bit
without error, i.e. no full bits (c.f. Section 6.1), there is less than 2%
error in each of the biases of the 4 top most significant bits. For the
brainpoolp224r1 curve, wolfSSL only shows negligible leakage.

Leakage Exploitability. The leakage observed for secp160r1
is exploitable with conventional LLL reduction techniques. In Sec-
tion 7.3 we demonstrate the key reconstruction for secp160r1 from
real side-channel traces as a case study for StumbleStepping.

For evaluating the exploitability of the leakages for the curves
brainpoolp320r1 and brainpoolp384r1, we use the predicate with
sieving technique from Albrecht et al. [2] and extend their imple-
mentation to also support MSB prefixes containing bits other than
0, as the leaked MSB prefixes are 0b110 and 0b1000, respectively.
The work of Albrecht et al. suggests, that 4 bits are required to
reconstruct keys for 384 bit curves. Thus, our 3.5 bit leakage in
the brainpoolp384r1 curve is a borderline case. However, our data
shows that we can also use the 4 MSBs as full bits, accepting a small
additional error. The error can be countered by resampling the sub-
sets of the obtained signatures used for reconstruction and running
the key reconstruction multiples times with different subsets.

While the key reconstruction terminates in a reasonable time, it
never succeeds. To verify, that the error is not due to the small error
probability of the individual bits, we also performed additional key
reconstruction experiments on simulated data: We simulate the
leading 4 bit 0b1000 leakage from our side-channel experiments
without errors. However, the reconstruction does not succeed ei-
ther. Using a simulated, error free 5 bit leakage, the reconstructions
succeeds. To verify the correctness of our changes to the implemen-
tation of Albrecht et al. [2] we validate that the reconstruction for
a simulated 4 bit non-zero MSB leakage for the NISTP384 curve,
which they used as a benchmark, succeeds. Since this validation

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Luca Wilke, Florian Sieck, and Thomas Eisenbarth

Listing 4: Simplified version of the leaking bn_div_fixed_top
(openssl/crypto/bn/bn_div.c) function which divides num
by divisor and is called during the nonce generation. The
snippet is not self-contained and only intended to highlight
the control flow. The colored Event comments mark points
in the control flow that leak information about the nonce.
1 int bn_div_fixed_top(BIGNUM* dv, rm, num , divisor ,

2 BN_CTX *ctx) {

3
4 for (i = 0; i < loop; i++, wnumtop --) {

5 for (;;) {

6 if ((t2h < rem) ||

7 ((t2h == rem) && (t2l <= n2)))

8 b r e a k ;

9 //Event 𝑂1
10 q--;

11 rem += d0;

12 if (rem < d0) //don't let rem overflow

13 b r e a k ;

14 //Event 𝑂2
15 if (t2l < d1)

16 t2h --;

17 t2l -= d1;

18 }}};

was successful, we assume that more than 4 bits are required for
brainpoolp384r1, in contrast to NISTP384.

The 3 bit leakage for the brainpoolp320r1 was too small to be
exploited with the methods of Albrecht et al. in our experiments.

6.3 Nonce Leakage in OpenSSL
For analyzing OpenSSL, we compile it with the default configura-
tion, which uses truncation with modular reduction to compute
the nonce 𝑘 . From the OpenSSL code and corresponding comments,
we could infer that it is envisaged to implement the computation
of the estimated quotient in constant-time. However, this feature
is not used and during the course of the responsible disclosure we
learned that it is not implemented.

Leaking Control Flow Events. We show a simplified version
of the procedure used for the division during nonce truncation
in Listing 4. It is comparable to the procedure used in wolfSSL,
however, contains slightly different observable side-channel events.
Event 𝑂1 in line 9 describes how often the estimated quotient is
decremented. Additionally, we observe the event𝑂2 in line 14which
describes whether the remainder of the division overflows during
the procedure of decrementing the variable q. We do not consider
the if-clause following event𝑂2. Though it changes the control flow
we did not observe any differences in the resulting bit distributions
when using it as a differentiator.

Leakage Quantification. In Figure 8, we show that there is a 7
bit leakage for curve brainpoolp224r1. As detailed in Table 2, only
6 of these 7 bits are full bit leakages. However, since the error for
the 7th bit is small, we can integrate it into the key reconstruction
as well. This leakage is only observable in the OpenSSL imple-
mentation as a differentiation by the event 𝑂2 is required. For the
secp160r1, brainpoolp320r1 and brainpoolp384r1 curve, OpenSSL
shows similar leakage as wolfSSL.

0 10 20
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

210 220
Nonce bits

brainpoolP224r1; Samples in dist: 15637; Ctr1: 1; Ctr2: 0

Figure 8: Distribution of nonce bits for brainpoolp224r1 curve
in OpenSSL given event (𝑂1 = 1,𝑂2 = 0). The y-axis shows the
percentage of nonces for which the value of the correspond-
ing bit is 1. The 6 most significant bits are 0b110101 for all
samples. The 7th bit is 1 for more than 99% of all samples.

Leakage Exploitability. The 7 bit leakage for curve brain-
poolp224r1 is exploitable. To reconstruct the key, we use our ex-
tended variant of the predicate with sieving technique from Al-
brecht et al. [2]. We present the result in our single-stepping case
study in Section 7.2. The maximum leakage and exploitability for
the curves secp160r1, brainpoolp320r1 and brainpoolp384r1 corre-
sponds to the analysis in Section 6.2.

6.4 Leakage Analysis Summary
We observe that the truncation of the secret nonce 𝑘 leaks a varying
number of most significant bits, depending on the order of the
ECDSA curve. The order of the curve serves as denominator during
nonce truncation. While we observe only small leakages for curves
with an order that consist of only 1 valued bits in the MSBs, we
see large leakage in the opposite case, i.e., few 1 valued bits in the
MSBs of the curve’s order.

In contrast to what is reported in previous work [52], we find
that the bias introduced through modular reduction during nonce
creation is not always negligible, but depends on the order 𝑛 of
the curve. We show that in certain situations, a substantial bias
is introduced and observable through side-channels. Additionally,
note that FIPS 186.5 [38] states in A3.1 that implementations which
use truncation during nonce creation shall use an additional 64 bit
of randomness to avoid a bias to 𝑘 . While wolfSSL is following this
advice, 𝑘 is still biased. We assume that the advice in FIPS 186.5
refers to the overall distribution of 𝑘 , but does not take into account
additional side-channel information.

7 CASE STUDIES
In the following we evaluate both our attack primitives on real-
world cryptographic libraries and demonstrate their ability to leak
the ECDSA nonce 𝑘 , allowing us to reconstruct the private key.
Our attack targets are the nonce leakages described in the previous

TDXdown: Single-Stepping and Instruction Counting Attacks against Intel TDX CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

section. We first explain our attack approach in general and then
give details for the specific primitives and attacks targets.

7.1 Attack Approach
The general attack approach is the same for both attacks and splits
into an online and an offline phase.

Offline Phase. In the offline phase, we build the mapping from
the number of observed instructions per trace to the occurrence
count of the events. Additionally, to be able to use single-stepping
and StumbleStepping we need to find page fault trigger points, such
that the number of instructions executed between the trigger points
allows us to infer the number of times the control flow passes the
observed event. To infer when the victim is about to be executed,
we generate a page fault based template. For all tasks, we use a
semi-automated approach combining static binary analysis and
dynamic binary instrumentation.

Online Phase. In the online phase, the attacker first needs to de-
termine the guest physical addresses of certain functions inside the
target in order to instantiate the page fault sequence template from
the offline phase. Afterwards, they can use the template to start
single-stepping or StumbleStepping for tracing the TD when the
targeted code is about to be executed. This allows us to count the
executed instructions between the trigger points. For the evaluation,
we streamlined the attack scenario by calling the target libraries
from a self-written program, that triggers the signature generation
and supplies the attacker with the guest physical address of the
target library. As several works [28–30, 35] against AMD’s confi-
dential VM solution SEV, as well as confidential VM like systems in
general [9], have already demonstrated that an attacker can locate
applications in memory by observing access patterns, it is a valid
assumption that the attacker can infer the guest physical addresses
for the page fault template. We want to stress that the addresses
used for the template are only from the target library, not from the
calling application. To maximize the performance, we implemented
our attack logic inside the Linux KVM hypervisor kernel module.

7.2 Single-Stepping brainpoolp224r1
The first case study shows the reliability and high resolution of our
single-stepping primitive. We extract the private ECDSA key from
the side-channel leakage in the nonce generation process for the
brainpoolp224r1 curve in OpenSSL as described in Section 6. The
attack was executed on the same platform as the single-stepping
evaluation. The possible event combinations for brainpoolp224r1
in OpenSSL are (𝑂1, 𝑂2): (0, ∗), (1, 0), (1, 1). The event (1, 0) corre-
sponds to signatures with the nonce bias required for our attack.
This event corresponds to leaving the inner for-loop in Listing 4
before event 𝑂2 = 0 in Line 14 but only after executing event 𝑂1 =
1 in Line 9 once.

Offline Phase. Due to the code structure, we cannot use page
accesses to distinguish the events. Instead, we use page accesses
shortly before and after the loop to trigger single-stepping. Using
our trigger points, we measure 32 steps for the event (0, ∗), either
38 for 39 steps for the nonce bias event (1, 0), and 42 or 43 steps for
the event (1, 1). The variable amount of steps for the events (1, 0)
and (1, 1) is caused by the or-condition in Listing 4 before the event
𝑂1 and some code restructuring by the compiler.

Online Phase. As explained in the attack approach, we first
obtain the guest physical address for the attacked code sequence
in OpenSSL to instantiate the page fault template which we use
to single-step only the execution of the nonce truncation. Our
attack code requires on average 32.98 ms per signature. Without
an ongoing attack, a signature requires on average 0.33 ms.

To recover the key, we need 33 signatures with the nonce bias
event (𝑂1, 𝑂2) = (1, 0), i.e. 38 or 39 counted steps. Given the low
probability of the event, we need to observe 170 000 signatures.
Collecting all signature traces takes approximately 94 minutes.
The reconstruction of the long-term key is conducted as described
in Section 6.3 and requires 1.5 seconds on an Intel Xeon E-2286M.

7.3 StumbleStepping secp160r1
In this section, we exploit the nonce leakage in the secp160r1 curve
from Section 6 with StumbleStepping. We choose wolfSSL as target
for the attack and run the experiments on the same platform used
for the evaluation of the StumbleStepping primitive.

The possible event combinations for secp160r1 are (𝑊1,𝑊2):
(1, 1), (2, 1), (2, 2). The event𝑊1 describes the number of times
the do-while loop in Listing 3 is executed. The events (2, 1), (2, 2)
correspond to signatures with the nonce bias required for our attack.

Offline Phase. Due to the code structure, we cannot use page
accesses to distinguish the events. Instead, we use page accesses
shortly before and after the outer loop to trigger StumbleStepping.
Using our trigger points, the events (1, 1), (2, 1), (2, 2) correspond
to 178, 230 and 239 executed instructions.

Online Phase. As explained in the attack approach, we first
determine the required guest physical address for the attacked code
sequence in wolfSSL, instantiate the page fault template and then
start the StumbleStepping primitive to trace only the execution of
the nonce truncation. Our attack code requires on average 4.77 ms
per secp160r1 signature. Without an ongoing attack, a signature
requires on average about 0.01 ms.

To recover the key, we require 12 signatures with a biased nonce,
i.e. two occurrences of the event𝑊1. Since the probability for two
occurrences of event𝑊1 is very low, we need to observe 700 000
signatures. Collecting all signature traces takes approximately 56
minutes. The measurement results are shown in Figure 9. As ex-
pected from the evaluation of the toy examples in Section 5.2, the
measurements contain some noise. Still, we are able to distinguish
the two relevant event groups, which differ by 52 instructions, with-
out errors. Using the LLL approach described in Section 2.5, the
key recovery finishes in 1.7 seconds on an Intel Xeon E-2286M.

8 DISCUSSION
In this section we suggest improvements to the current single-
stepping countermeasure design and discuss limitations of our
StumbleStepping primitive.

8.1 Improved Single-Stepping Detection
We propose to only rely on the progress of the instruction counter
to detect single-stepping. As discussed in AEX-Notify [12], single-
stepping requires the attacker to artificially slow down the execu-
tion of the first instruction, e.g. via a TLB flush. The authors further
show that consequently the attacker cannot reliably interrupt the

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Luca Wilke, Florian Sieck, and Thomas Eisenbarth

Figure 9: Side-channel data for the StumbleStepping attack on
the secp160r1 curve in wolfSSL. The legend states the actual
number of executed instructions while the x-axis shows the
inferred number of instructions. In total, we collected data
for 700 000 signatures.

SGX enclave after the second instruction, i.e. the attacker cannot
“two-step”. Based on these results, changing the heuristic to en-
force that at least two instructions have been executed prevents
repeatedly interrupting the TD after 𝑥 instructions. If less than
two instructions have been executed the prevention mode gets
activated.

8.2 Improved Single-Step Prevention Mode
In this section, we propose changes to the single-stepping pre-
vention mode, to mitigate the instruction count leakage. For our
StumbleStepping attack in Section 5, we observe memory accesses to
the TD’s TDVPS management data structure to infer the number of
executed instructions. Thus, one could consider adding additional
accesses to this data structure from the TDX module to introduce
noise to any potential side-channel measurements relying on these
accesses. However, the fact that each iteration of the invocation of
the TDX single-stepping prevention mode requires a TD entry and
exit exposes a large microarchitectural attack surface, potentially
allowing for other measurable effects. For example, simply measur-
ing the time between the APIC timer interrupt firing and control
being handed back to the hypervisor already reveals coarse grained
information about the number of instructions executed by the TD.

Thus, as a more profound solution, we propose to extend the
Monitor Trap Flag mechanism currently used when executing the
TD in single-stepping prevention mode. Instead of trapping after
one instruction, the mechanism could directly support to execute a
randomized number of instructions in one burst. As a result, only a
single TD entry is required regardless of the number of instructions
executed by the single-stepping prevention mode, mitigating the
instruction count leakage at its root.

8.3 AEX-Notify based Countermeasure
Orthogonal to the TDX single-stepping countermeasure, that is split
into detection and prevention, it should also be possible to port the
countermeasure from AEX-Notify[12] to VM-based TEEs like TDX.
They execute a special interrupt handler that prefetches the first
instruction to undo any artificial slowdowns that would be required
for single-stepping. Since VMs are already interrupt aware, it should
be possible to simply execute this interrupt handler every time the
TD is entered. With the original AEX-Notify design, the security
of the TEE depends on the runtime inside the protected enclave to
use their interrupt handler. With TDX, this could be improved by
moving the prefetching step to the TDX module, instead.

8.4 Limitations of StumbleStepping
Compared to instruction counting attacks that use single-stepping,
as e.g. CopyCat [33], the StumbleStepping attack from Section 5 pro-
vides slightly weaker leakage. Since we cannot pause the TD after
every instruction, we cannot distinguish balanced if-else branches
that only differ in the relative order of their memory accesses. This
is only possible with single-stepping, as it allows removing page
access rights after every memory access instruction.

8.5 Attack Overhead
The case studies in Section 7.2 and Section 7.3 show different rela-
tive overheads introduced to the signature computation time by the
attack code. While the single-stepping attack on OpenSSL in Sec-
tion 7.2 slows down the execution approximately by a factor 100,
the signature creation with a running StumbleStepping attack on
wolfSSL in Section 7.3 is roughly 500 times slower.

These differences can be attributed to multiple factors. First,
we use different single-stepping mechanisms in both primitives.
While StumbleStepping implicitly single-steps the TD by setting
the MTF flag, the single-stepping primitive uses the APIC timer.
Furthermore, the observed instruction sequences have different
lengths and finally, the page fault sequences required to trigger the
attack have different lengths.

9 RELATEDWORK
We start this section, by reviewing existing security flaws found in
TDX before giving a summary of existing attacks on ECDSA.

9.1 TDX
To the best of our knowledge, this is the first academic paper

attacking the Intel TDX single-stepping countermeasure. However,
Intel commissioned several security reviews [1, 20] to assess and
improve the security of TDX.

Single-Stepping. In Intel’s security review [20], a straightfor-
ward single-stepping attack against an early TDX version was
developed. However, Intel states that this is mitigated since TDX
module version 1.0. Our evaluation targets use version 1.0 and
version 1.5 and thus break Intel’s countermeasure. During the dis-
closure process, Intel stated TDX module versions after 1.5.0.6 will
contain additional security measures.

Page Fault Controlled-Channel. The authors of [1] discuss
that the memory blocking feature of the TDX API can be used to

TDXdown: Single-Stepping and Instruction Counting Attacks against Intel TDX CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

implement page fault controlled-channel attacks, recovering the
TD’s control flow with page granularity.

Cache Attacks. In [1] they also describe how the MKTME
KeyID in combination with the cache coherency protocol enables
Flush+Reload-style cache attacks on TDX. In addition, they state
that the monitor and mwait instruction can be used to implement
cache attacks, similar to [60].

9.2 ECDSA Key Recovery
Weiser et al. [52] perform a systematic study of ECDSA nonce leak-
ages. They already discovered the leakage described in this work,
but classify it as negligible and do not further investigate it. How-
ever, our results show that the leakage depends on the curve order
and that it introduces large biases for some curves. CopyCat [33]
uses instruction counting with SGX to exploit side-channels in
modular inversion and elliptic curve scalar multiplication. In TPM-
Fail [34], the authors also exploit the elliptic curve scalar multipli-
cation, however in the context of TPM implementations. In Lad-
derleak [4], the authors use a timing side-channel in combination
with roughly half a billion signatures for a 163 bit curve to exploit
nonce leakages smaller than 1 bit, building on Bleichenbacher [8].
Moreover, Ryan [42] investigates leakages introduced through non-
constant-time implementations of the modular reduction of 𝑟 · 𝑑
and 𝑟 · 𝑑 + ℎ.

10 CONCLUSION
Intel’s most recent TDX TEE comes with a built-in countermeasure
against single-stepping attacks. In this work, we have demonstrated
the first attacks against this countermeasure. We developed two
attack primitives: Single-stepping TDs by outwitting the detection
heuristic and counting the TD’s instructions with StumbleStepping.
The former fully breaks the countermeasure by manipulating the
CPU frequency to pass a time check in the single-stepping detection
heuristic. The second attack exploits the side-channel properties of
the single-stepping countermeasure, revealing a systematic flaw in
the current design that leaks the number of executed instructions
via a cache side-channel. We propose design changes to mitigate
both attacks. As a second major contribution, we have performed
an extensive analysis of nonce truncation-based leakages in ECDSA
signatures, revealing vulnerable implementations in wolfSSL and
OpenSSL. We exploit our findings in two attack case studies: one
against curve secp160r1 in wolfSSL using StumbleStepping and
one against curve brainpoolp224r1 in OpenSSL using our single-
stepping primitive.

ACKNOWLEDGEMENTS
The authors thank Intel for providing them with access to a TDX
enabled machine. Additionally, we thank Anja Rabich for fruitful
discussions as well as Anna Pätschke and Jan Wichelmann for
proofreading and valuable feedback. This work was supported by
the BMBF projects SASVI and AnoMed as well as by Deutsche
Forschungsgemeinschaft (DFG) under grant 439797619 (HaSPro).

REFERENCES
[1] Erdem Aktas, Cfir Cohen, Josh Eads, James Forshaw, and Felix Wilhelm. 2023.

Intel Trust Domain Extensions (TDX) Security Review. https://services.google.
com/fh/files/misc/intel_tdx_-_full_report_041423.pdf. Accessed on 07.10.2023.

[2] Martin R. Albrecht and Nadia Heninger. 2021. On Bounded Distance Decoding
with Predicate: Breaking the "Lattice Barrier" for the Hidden Number Prob-
lem. In Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part I (Lecture Notes in Computer Sci-
ence, Vol. 12696), Anne Canteaut and François-Xavier Standaert (Eds.). Springer,
528–558. https://doi.org/10.1007/978-3-030-77870-5_19

[3] AMD. 2020. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protec-
tion and More. https://www.amd.com/content/dam/amd/en/documents/epyc-
business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-
integrity-protection-and-more.pdf.

[4] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. 2020. LadderLeak: Breaking ECDSA with Less than One Bit
of Nonce Leakage. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020, Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 225–242. https:
//doi.org/10.1145/3372297.3417268

[5] ARM. 2023. Introducing Arm Confidential Compute Architecture. https://
developer.arm.com/documentation/den0125/latest. Revision 0300-01.

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Mar-
tin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark
Stillwell, David Goltzsche, David M. Eyers, Rüdiger Kapitza, Peter R. Pietzuch,
and Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX.
In 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kimberly Keeton and Tim-
othy Roscoe (Eds.). USENIX Association, 689–703. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov

[7] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. 2015. Shielding Appli-
cations from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst. 33, 3
(2015), 8:1–8:26. https://doi.org/10.1145/2799647

[8] Daniel Bleichenbacher. 2000. On the generation of one-time keys in DL signature
schemes. In Presentation at IEEE P1363 working group meeting. 81.

[9] Robert Buhren, Felicitas Hetzelt, and Niklas Pirnay. 2018. On the Detectabil-
ity of Control Flow Using Memory Access Patterns. In Proceedings of the 3rd
Workshop on System Software for Trusted Execution (Toronto, Canada) (Sys-
TEX ’18). Association for Computing Machinery, New York, NY, USA, 48–53.
https://doi.org/10.1145/3268935.3268941

[10] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution, SysTEX@SOSP 2017, Shanghai,
China, October 28, 2017. ACM, 4:1–4:6. https://doi.org/10.1145/3152701.3152706

[11] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM, 178–195.
https://doi.org/10.1145/3243734.3243822

[12] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao, Cedric Xing, Ilya Alexan-
drovich, Taesoo Kim, Frank Piessens, Mona Vij, and Mark Silberstein. 2023. AEX-
Notify: Thwarting Precise Single-Stepping Attacks through Interrupt Awareness
for Intel SGX Enclaves. In 32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023, Joseph A. Calandrino and Carmela
Troncoso (Eds.). USENIX Association. https://www.usenix.org/conference/
usenixsecurity23/presentation/constable

[13] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. Branchscope: A new side-channel attack on directional branch
predictor. ACM SIGPLAN Notices 53, 2 (2018), 693–707.

[14] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache Attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security, EUROSEC 2017, Belgrade, Serbia, April 23, 2017, Cristiano Giuf-
frida and Angelos Stavrou (Eds.). ACM, 2:1–2:6. https://doi.org/10.1145/3065913.
3065915

[15] Nick Howgrave-Graham and Nigel P. Smart. 2001. Lattice Attacks on Digital
Signature Schemes. Des. Codes Cryptogr. 23, 3 (2001), 283–290.

[16] IBM. 2022. Introducing IBM Secure Execution for Linux 1.3.0. https://www.ibm.
com/docs/en/linuxonibm/pdf/l130se03.pdf. Revision SC34-7721-03.

[17] Intel. 2021. Intel Trust Domain Extensions (Intel TDX) Module Base Architecture
Specification. Revision 348549-001.

[18] Intel. 2022. Intel Architecture Memory Encryption Technologies. Revision
336907-004US.

[19] Intel. 2023. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Combined Volumes: 1 to 4. Revision 325462-080.

[20] Intel. 2023. Intel TDX Documentation. https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/technical-
documentation/tdx-security-research-and-assurance.html. Accessed on
30.11.2023.

[21] Intel. 2023. Intel Trust Domain Extensions. https://cdrdv2.intel.com/v1/dl/
getContent/690419. Accessed on 07.10.2023.

https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://doi.org/10.1007/978-3-030-77870-5_19
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1145/3372297.3417268
https://developer.arm.com/documentation/den0125/latest
https://developer.arm.com/documentation/den0125/latest
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1145/2799647
https://doi.org/10.1145/3268935.3268941
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3243734.3243822
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/tdx-security-research-and-assurance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/tdx-security-research-and-assurance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/tdx-security-research-and-assurance.html
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Luca Wilke, Florian Sieck, and Thomas Eisenbarth

[22] Intel. 2023. MKTME Side Channel Impact on Intel TDX. https://www.intel.
com/content/www/us/en/developer/articles/technical/software-security-
guidance/best-practices/mktme-side-channel-impact-on-intel-tdx.html.
Accessed on 07.10.2023.

[23] Intel. 2024. Intel TDX Module - Code for Single-Step Detection and Single-Step
Prevention. https://github.com/intel/tdx-module/blob/tdx_1.5/src/td_transitions/
td_exit_stepping.. Accessed on 18.04.2024.

[24] Intel. 2024. Software Security Guidance - Best Practices. https:
//www.intel.com/content/www/us/en/developer/topic-technology/software-
security-guidance/best-practices.html. Accessed on 28.08.2024.

[25] David Kaplan. 2017. Protecting VM Register state with SEV-ES.
https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf.

[26] David Kaplan, Jeremy Powell, and Wolle. 2021. AMD Memory Encryp-
tion. https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/memory-encryption-white-paper.pdf.

[27] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-
cus Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing. In 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Risten-
part (Eds.). USENIX Association, 557–574. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/lee-sangho

[28] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-
escu, and Yinqian Zhang. 2022. A Systematic Look at Ciphertext Side Channels
on AMD SEV-SNP. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San
Francisco, CA, USA, May 22-26, 2022. IEEE, 337–351. https://doi.org/10.1109/
SP46214.2022.9833768

[29] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting
Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization. In 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX Association,
1257–1272. https://www.usenix.org/conference/usenixsecurity19/presentation/
li-mengyuan

[30] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.
CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the
Ciphertext Side Channel. In 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX
Association, 717–732. https://www.usenix.org/conference/usenixsecurity21/
presentation/li-mengyuan

[31] Moritz Lipp, Andreas Kogler, David F. Oswald, Michael Schwarz, Catherine
Easdon, Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based
Power Side-Channel Attacks on x86. In 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 355–371. https:
//doi.org/10.1109/SP40001.2021.00063

[32] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:
How SGX Amplifies the Power of Cache Attacks. In Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10529),
Wieland Fischer and Naofumi Homma (Eds.). Springer, 69–90. https://doi.org/10.
1007/978-3-319-66787-4_4

[33] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar.
2020. CopyCat: Controlled Instruction-Level Attacks on Enclaves. In 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Capkun
and Franziska Roesner (Eds.). USENIX Association, 469–486. https://www.usenix.
org/conference/usenixsecurity20/presentation/moghimi-copycat

[34] DanielMoghimi, Berk Sunar, Thomas Eisenbarth, andNadia Heninger. 2020. TPM-
FAIL: TPMmeets Timing and Lattice Attacks. In 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner
(Eds.). USENIX Association, 2057–2073. https://www.usenix.org/conference/
usenixsecurity20/presentation/moghimi-tpm

[35] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. 2018. SEV-
ered: Subverting AMD’s Virtual Machine Encryption. In Proceedings of the 11th
European Workshop on Systems Security, EuroSec@EuroSys 2018, Porto, Portu-
gal, April 23, 2018, Angelos Stavrou and Konrad Rieck (Eds.). ACM, 1:1–1:6.
https://doi.org/10.1145/3193111.3193112

[36] Stephan Mueller and Marek Vasut. 2021. Intel Trust Domain CPU Architectural
Extensions. https://www.kernel.org/doc/html/latest/crypto/index.html. Revision
343754-002.

[37] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks
against Intel SGX. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San
Francisco, CA, USA, May 18-21, 2020. IEEE, 1466–1482. https://doi.org/10.1109/
SP40000.2020.00057

[38] National Institute of Standards and Technology. 2023. FIPS 186-5 - Digital Signa-
ture Standard (DSS). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf.

[39] Phong Q. Nguyen and Igor E. Shparlinski. 2003. The Insecurity of the Elliptic
Curve Digital Signature Algorithm with Partially Known Nonces. Des. Codes
Cryptogr. 30, 2 (2003), 201–217. https://doi.org/10.1023/A:1025436905711

[40] OpenSSL. 2024. OpenSSL Security Policy. https://www.openssl.org/policies/
general/security-policy.html. Accessed on 18.04.2024.

[41] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2021. CrossTalk: Speculative Data Leaks Across Cores Are Real. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021. IEEE, 1852–1867. https://doi.org/10.1109/SP40001.2021.00020

[42] Keegan Ryan. 2019. Return of the Hidden Number Problem. A Widespread and
Novel Key Extraction Attack on ECDSA and DSA. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2019, 1 (2019), 146–168. https://doi.org/10.13154/TCHES.V2019.I1.
146-168

[43] Benedict Schlüter, Supraja Sridhara, Andrin Bertschi, and Shweta Shinde. 2024.
WESEE: Using Malicious #VC Interrupts to Break AMD SEV-SNP. In to appear at
45th IEEE Symposium on Security and Privacy.

[44] Benedict Schlüter, Supraja Sridhara, Mark Kuhne, Andrin Bertschi, and Shweta
Shinde. 2024. HECKLER: Breaking Confidential VMs with Malicious Interrupts.
In to appear at 33rd USENIX Security Symposium (USENIX Security 24).

[45] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-15,
2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz
(Eds.). ACM, 753–768. https://doi.org/10.1145/3319535.3354252

[46] Florian Sieck, Sebastian Berndt, Jan Wichelmann, and Thomas Eisenbarth. 2021.
Util: : Lookup: Exploiting Key Decoding in Cryptographic Libraries. In CCS ’21:
2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, Republic of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni
Vigna, and Elaine Shi (Eds.). ACM, 2456–2473. https://doi.org/10.1145/3460120.
3484783

[47] Florian Sieck, Zhiyuan Zhang, Sebastian Berndt, Chitchanok Chuengsatiansup,
Thomas Eisenbarth, and Yuval Yarom. 2023. TeeJam: Sub-Cache-Line Leakages
Strike Back. IACR Transactions on Cryptographic Hardware and Embedded Systems
2024, 1 (Dec. 2023), 457–500. https://doi.org/10.46586/tches.v2024.i1.457-500

[48] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep
Torrellas, and Christopher W. Fletcher. 2020. MicroScope: Enabling Microarchi-
tectural Replay Attacks. IEEE Micro 40, 3 (2020), 91–98. https://doi.org/10.1109/
MM.2020.2986204

[49] Chia-che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIXAnnual Technical
Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017, Dilma Da
Silva and Bryan Ford (Eds.). USENIX Association, 645–658. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/tsai

[50] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2421–2434.

[51] Wubing Wang, Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. 2023. Pwr-
Leak: Exploiting Power Reporting Interface for Side-Channel Attacks on AMD
SEV. In Detection of Intrusions and Malware, and Vulnerability Assessment -
20th International Conference, DIMVA 2023, Hamburg, Germany, July 12-14, 2023,
Proceedings (Lecture Notes in Computer Science, Vol. 13959), Daniel Gruss, Fed-
erico Maggi, Mathias Fischer, and Michele Carminati (Eds.). Springer, 46–66.
https://doi.org/10.1007/978-3-031-35504-2_3

[52] Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer. 2020. Big
Numbers - Big Troubles: Systematically Analyzing Nonce Leakage in (EC)DSA
Implementations. In 29th USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX As-
sociation, 1767–1784. https://www.usenix.org/conference/usenixsecurity20/
presentation/weiser

[53] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2018.
MicroWalk: A Framework for Finding Side Channels in Binaries. In Proceedings
of the 34th Annual Computer Security Applications Conference, ACSAC 2018, San
Juan, PR, USA, December 03-07, 2018. ACM, 161–173. https://doi.org/10.1145/
3274694.3274741

[54] Jan Wichelmann, Florian Sieck, Anna Pätschke, and Thomas Eisenbarth. 2022.
Microwalk-CI: Practical Side-Channel Analysis for JavaScript Applications. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM, 2915–2929. https://doi.org/10.
1145/3548606.3560654

[55] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth. 2020.
SEVurity: No Security Without Integrity : Breaking Integrity-Free Memory En-
cryption with Minimal Assumptions. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1483–1496.
https://doi.org/10.1109/SP40000.2020.00080

[56] Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas Eisenbarth. 2023.
SEV-Step A Single-Stepping Framework for AMD-SEV. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2024, 1 (Dec. 2023), 180–206.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mktme-side-channel-impact-on-intel-tdx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mktme-side-channel-impact-on-intel-tdx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mktme-side-channel-impact-on-intel-tdx.html
https://github.com/intel/tdx-module/blob/tdx_1.5/src/td_transitions/td_exit_stepping.
https://github.com/intel/tdx-module/blob/tdx_1.5/src/td_transitions/td_exit_stepping.
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/best-practices.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/best-practices.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/best-practices.html
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://doi.org/10.1109/SP46214.2022.9833768
https://doi.org/10.1109/SP46214.2022.9833768
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://doi.org/10.1145/3193111.3193112
https://www.kernel.org/doc/html/latest/crypto/index.html
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://doi.org/10.1023/A:1025436905711
https://www.openssl.org/policies/general/security-policy.html
https://www.openssl.org/policies/general/security-policy.html
https://doi.org/10.1109/SP40001.2021.00020
https://doi.org/10.13154/TCHES.V2019.I1.146-168
https://doi.org/10.13154/TCHES.V2019.I1.146-168
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3460120.3484783
https://doi.org/10.1145/3460120.3484783
https://doi.org/10.46586/tches.v2024.i1.457-500
https://doi.org/10.1109/MM.2020.2986204
https://doi.org/10.1109/MM.2020.2986204
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1007/978-3-031-35504-2_3
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser
https://doi.org/10.1145/3274694.3274741
https://doi.org/10.1145/3274694.3274741
https://doi.org/10.1145/3548606.3560654
https://doi.org/10.1145/3548606.3560654
https://doi.org/10.1109/SP40000.2020.00080

TDXdown: Single-Stepping and Instruction Counting Attacks against Intel TDX CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

https://doi.org/10.46586/tches.v2024.i1.180-206
[57] wolfSSL. 2023. wolfSSL Manual. https://www.wolfssl.com/documentation/

manuals/wolfssl/chapter02.html. Accessed on 30.11.2023.
[58] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel

Attacks: Deterministic Side Channels for Untrusted Operating Systems. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. IEEE Computer Society, 640–656. https://doi.org/10.1109/SP.2015.45

[59] Ruiyi Zhang, Lukas Gerlach, Daniel Weber, Lorenz Hetterich, Youheng Lü, An-
dreas Kogler, and Michael Schwarz. 2024. CacheWarp: Software-based Fault In-
jection using Selective State Reset. In 33rd USENIX Security Symposium (USENIX
Security 24).

[60] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz. 2023. (M)WAIT
for It: Bridging the Gap between Microarchitectural and Architectural Side
Channels. In 32nd USENIX Security Symposium, USENIX Security 2023, Ana-
heim, CA, USA, August 9-11, 2023, Joseph A. Calandrino and Carmela Troncoso
(Eds.). USENIX Association, 7267–7284. https://www.usenix.org/conference/
usenixsecurity23/presentation/zhang-ruiyi

A ECDSA LEAKAGE ANALYSIS

0 20
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

300 320
Nonce bits

bp320r1; Samples in dist: 16736; trail guesses ctr: 3

(a) Distribution of the nonce bits for curve brainpoolp320r1 in wolf-
SSL given the event𝑊1 = 3. The most significant bits are 0b110 in all
cases.

0 20
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

360 380
Nonce bits

bp384r1; Samples in dist: 501593; trail guesses ctr: 2

(b) Distribution of the nonce bits for curve brainpoolp384r1 in wolf-
SSL given the event𝑊1 = 2. The most significant bits are 0b1000 in
98% of all cases.

Figure 10: Distribution of nonce bits for different Brainpool
curves. Events are specified in the subcaptions. The y-axis
shows the percentage of nonces with a 1 in the corresponding
bit position.

Table 3: Maximum obtainable leakage in terms of mutual in-
formation (MI) and fully leaked bits (FB) for different curves
in wolfSSL und OpenSSL. This table complements Table 2.
Data collection described in Section 6.1.

wolfSSL OpenSSL

Event MI/FB Pr[A=a] Event MI/FB Pr[A=a]

(𝑊1 ,𝑊2) [bit / bit] (𝑂1 ,𝑂2) [bit / bit]
bp160r1

- - - (0, *) 0.1 / 0 0.81
(1, 0) 1.3 / 1 0.11
(1, 1) 1 / 1 0.08

bp192r1

- - - (0, *) 0.4 / 0 0.64
(1, 0) 0.7 / 0 0.13
(1, 1) <0.1 / 0 0.23

bp256r1

(1, 1) 0.2 / 0 0.24 (0, *) 0.4 / 0 0.85
(1, 2) 0.6 / 0 0.61 (1, *) 1.1 / 0 0.15
(2, *) 1.1 / 0 0.15

bp224r1

(1, 1) <0.1 / 0 0.35 (0, *) 0.1 / 0 0.92
(1, 2) 0.3 / 0 0.56 (1, 0) 7 / 6 1.6 ·10−4

bp320r1

(1, 1) <0.1 / 0 0.16 (0, *) 0.3 / 0 0.54
(1, 2) 0.6 / 0 0.38 (1, 0) 0.1 / 0 0.28
(2, 3) <0.1 / 0 0.38 (2, *) 3 / 3 1.7 ·10−3

(2, 4) <0.1 / 0 0.8

bp384r1

(1, 1) 0.6 / 0 0.25 (0, *) 0.7 / 0 0.95
(1, 2) 0.8 / 0 0.70 (1, *) 3.5 / 0 0.05

secp128r1

(1, 1) <0.1 / 0 0.30 (0, *) <0.1 / 0 0.77
(1, 2) 0.3 / 0 0.47 (1, *) 1.3 / 1 0.23
(2, *) 1.3 / 1 0.23

secp192r1

(1, *) 0.2 / 0 0.5 (0, *) 0.2 / 0 0.5
(2, *) 0.2 / 0 0.5 (1, *) 0.2 / 0 0.5

https://doi.org/10.46586/tches.v2024.i1.180-206
https://www.wolfssl.com/documentation/manuals/wolfssl/chapter02.html
https://www.wolfssl.com/documentation/manuals/wolfssl/chapter02.html
https://doi.org/10.1109/SP.2015.45
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-ruiyi
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-ruiyi

	Abstract
	1 Introduction
	2 Background
	2.1 TDX
	2.2 TDX Control Data Structures
	2.3 Cache Attacks on Intel TDX
	2.4 Instruction Counting Attacks
	2.5 Elliptic Curve Digital Signature Algorithm
	2.6 Attacker Model

	3 TDX Single-Stepping Countermeasure
	4 Single-Stepping Trust Domains
	4.1 Attack Primitive Description
	4.2 Attack Primitive Evaluation

	5 StumbleStepping: Leaking Instruction Counts
	5.1 Attack Primitive Description
	5.2 Attack Primitive Evaluation

	6 Leaking ECDSA Keys from Biased Nonce Truncation
	6.1 Analysis Methodology
	6.2 Nonce Leakage in wolfSSL
	6.3 Nonce Leakage in OpenSSL
	6.4 Leakage Analysis Summary

	7 Case Studies
	7.1 Attack Approach
	7.2 Single-Stepping brainpoolp224r1
	7.3 StumbleStepping secp160r1

	8 Discussion
	8.1 Improved Single-Stepping Detection
	8.2 Improved Single-Step Prevention Mode
	8.3 AEX-Notify based Countermeasure
	8.4 Limitations of StumbleStepping
	8.5 Attack Overhead

	9 Related Work
	9.1 TDX
	9.2 ECDSA Key Recovery

	10 Conclusion
	References
	A ECDSA Leakage Analysis

